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Quantum Model of Selective Multiphoton Processesi 
The Role of External (Field) and   # 

Internal (Anharmonic Coupling) Detunings 

Jui-teng Lin and Thomas F. George 
Department of Chemistry 
university of Rochester 

Rochester, New York 14627 USA 

Quantum equations of motion describing the energy trans- 

fer dynamics via intramolecular anharmonic coupling are pre- 

sented and solved numerically.  Dynamical features of the 

average excitations of a homogeneous system (SFg) and a hetero- 

geneous system (H/W) are quantitatively discussed in terms of 

the intramolecular vibrational relaxation (IVR) rates.  Possi- 

ble mechanisms of surface-enhanced desorption via low-power 

laser radiation are proposed. 
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1. Introduction 

The selective nature of laser-induced processes, which 

crucially depend on the intramolecular vibrational relaxation (IVR) 

rate and on the pumping rate of the laser radiation, have been 

widely studied for homogeneous (gas-phase) systems " and more 

4-7 recently for heterogeneous systems. 

For homogeneous systems, several types of selectivity have 

been discussed in terms of the relative magnitudes of the pumping 

rate, the IVR rate, the intermolecular vibration-vibration and 

vibration-translation rates: (1) mode selective (for fast pumping), 

(2) molecule-selective (for fast IVR rate), (3) nonselective 

vibrational excitation (for strong intermolecular vibration-vibra- 

tion coupling) and (4) thermal excitation of the system. 

For heterogeneous systems, e.g., molecules (atoms) adsorbed 

on a solid surface, the nature of the laser selective effects are 

characterized not only by the intra- and intermolecular relaxation 

processes of the adsorbed species and the pumping rate of the 

laser field, but also by the surface-induced damping factor (via 

multiphonon processes) and the laser-induced surface dynamical 

8—11 phenomena, e.g., migration, desorption and predissociation. 

The laser-stimulated surface processes then may be: (1) mode 

selective, (2) adspecies selective, (3) migration (lattice-site) 

selective, (4) local heating and (5) nonselective thermal heating. 

In a homogeneous system, the mode- and/or molecule-selec- 

tive excitations are possible by a high-power short pulse when 

1 12 the IVR rate is small. '   For a heterogeneous system, the laser- 



—   — 

^ 

-2- 

stimulated selective surface bond breaking (desorption) is also 

possible when the phonon-induced damping rate is small for high- 

5 13 order multiphonon processes. '   The IVR rate therefore plays 

the essential role in the nature of the laser-selective excita- 

tions, both for homogeneous and heterogeneous systems.  In this 

Letter, the dynamical features of the intramolecular modes 

governed by the intramolecular anharmonic couplings are studied 

for two systems: (A) SF- (gas phase) and (B) H/W (hydrogen atom 

adsorbed on a tungsten surface). 

2. Quantum Equations of Motion for a Nonlinear Open System 

The total Hamiltonian describing an anharmonic quantum 

oscillator subject to laser (IR) radiation of an open system 

may be written as 
off 

H(tfQirQ2,...QN) = HJJ" + AHanh + H'(t),       (1) 

ef f where H_  is the effective unperturbed Hamiltonian of the system 

(with N normal modes), *Baah is the intramolecular anharmonic 

coupling and H'(t) is the laser field interaction Hamiltonian. 

In a second-quantization representation, the individual terms of 

the total Hamiltonian may be expressed by 

tf-l^fr'lW . (Li.) 

I 

<v- c^w + ••• 
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In eq. (2.a), the imaginary part of the complex effective Hamil- 

tonian r . takes account of the level broadening of the open sys- 

tem due to factors such as collisional (pressure) broadening for 

a homogeneous system or surface-phonon-induced damping for a 

heterogeneous system.  In eq. (2.b), two typical terms of the 

anharmonic coupling are shown: the first term representing 

T_ phase relaxation processes, where no vibrational energy among 

the intramolecular modes is exchanged, and the second term 

representing the T.. energy relaxation processes where the photon 

energy is deposited in the active mode(s) and populated in all 

the other inactive mode via anharmonic coupling.  In eq. (2.c), 

V. (t)<*V. -cos u)t is proportional to the derivative of the dipole 

moment and the effective local electric field of the j-th mode 

with laser frequency OJ. We note that the anharmonic coupling 

factors F^ and Sr^* are related to the p-th derivatives of the 

anharmonic potential energy (with respect to the normal coordi- 

nates) with p = Ä+m+n being the order of the multiquantum coupling, 

In order to study the energy tra#Ufer among the intra- 

molecular modes, we shall first set up the equations of motion of 

the energy-related relevant quantities.  The solution of the time- 

dependent Schrödinger equation 

with the total Hamiltonian H given by eq. (1) may be written as 14 
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where A(t) and B(t) are time-dependent coefficients. 

Substituting eq. (4) into eq. (3) with the expression of the total 

Hamiltonian [eqs. (1) and (2)], we find the equations of motion of 

the amplitude functions B . (j=l,2, • •-N) to be 

is-) 

where the external detuning (Ai.) and the internal detuning (AT) are 

defined by A^=2ir(v. .-V.)-ü) and A=2ir(£v.+rav.-nv )# In deriving eq. C5) , 

we have used the usual rotating-wave approximation and operator 

14 algebra such as 

[*f (e*«)] F(«A |>p (-**«.)] - R«**«P (S) 

where F(a ) is any operator function and B. are c-numbers. 

The important features of the quantum equations of motion 

[eq. (5)] are: (1) the j-th normal mode of the system is strongly 

coupled to the laser field when V. +0 and the external detuning is 

not far-off the resonance condition A;|=0 (due to the anharmonicity, 

we shall find later that the optimal detuning is red-shifted, i.e., 

Ag>0j; (2) the intramolecular coupling is governed by the coupling 

strengths AFJ"
3
 , XG.3  and the internal detuning A : for the intra- 

molecular coupling to be significant, we shall expect a near 

I III  Ml •—^«irMlfcM». iil«**MMlll«il  I. «i    •- -  -- ^-~JUJ-**h*mJ~*~^ä*- 
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7 15 resonance A *0, which was also shown by a classical treatment; ' 

(3) by eq. (5) and its complex conjugate, we find that the equation 

of motion for B*B. contains no T~ dephasing term, i.e., no vibra- 

tional energy is exchanged among the intramolecular modes due to 

the T_ dephasing processes; (4) the amplitude function is related 

to the average excitation in the Poisson distribution 

0 

where P  is the energy population of a harmonic oscillator (for 

X=0) and n. and n_. are the vibrational quantum number and the 

average excitation of the j-th mode, respectively; and 

J 2 Therefore the average excitation jL"|B. |" is a relevant quantity 

in describing the energy distribution among the intramolecular 

modes. 

3. Dynamical Excitation and Optimal Detuning 

(A) SF, gas-phase system 

To show the role of the external and internal detunings in 

IVR, we now first consider the gas-phase SF- system in the colli- 

sionless low-pressure regime (i.e. r.=0) and focus on the case of 
2 

the fourth-order anharmonic coupling eQ-,Q2 Qg' where e is the an- 

harmonicity and Q-wQ7 and Q6 are the normal coordinates of the v., 

(active), v, and vg modes.  The corresponding internal detuning 

then is AI=2TT (v.-2v2-vg) and the external detuning is A =2irv -ID, 

 ——:"-— •*- ••--- —•• • 
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where u>  is the frequency of the tunable CO- TEA laser which is 

near resonant to the v, mode.  The quantum coupled equations of 

motion [eq. (7)] for this case become 

where B.(j=l,2,3) are the related amplitude functions of the 

normal modes v3, v. and vg, respectively; A'=12A, A*=2IT (V' + vg-2v'2) 

and A'=27rvi-(D, with v!(j = 2,3,6) are the anharmonic-corrected 

frequencies, i.e., v !=v .-A'C ./tl; C. are the quantization con- 

1/2 stants C . = dT/2m .00.)   .  The above system, for the case of exact 

resonance A' =0, was discussed and the related IVR was estimated £ 
12 by Gan et al.   Here we shall show the dynamical features of IVR 

and find the optimal external and internal detunings by solving 

the coupled equations of motion numerically. We investigate the 

—      2  —      2 
time evolution of the average excitations, JI_ = |B, | , n2

=lB2'  and 

I1,= |B,,| , governed by eqs. (9) with the initial Boltzmann popula- 

tions at room temperature (T=300K), B1(0)=0.10, B2(0)=0.214 and 

B3(0)-0 417,  and the initial phases tan"
1[I.(0)/R.(0)]=0, where 

I. and R. are the imaginary and real parts of B.(j=l,2,3). 

Fig. 1 shows the peak value of the average excitation 

(n?) of the active (v3) mode as a function of the external detun- 

8    2 ing with laser intensity 1=10 W/cm . It is seen that the optimal 

external detuning A*= 17 cm-1 and the value of n* decreaseg rapidly 

• * 
tor A  larger than A„.  This 

  •', •••••• • 
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"red-shift" behavior of the optimal detuning is a general feature 

of any laser-excited anharmonic oscillator where the energy spac- 

ings are closer for higher levels.  [For more detailed analysis 

we refer the reader to Ref. 17.]    Figs. 2(A) and (B) 

show the exact resonance and the far-off resonance, respectively. 

It is seen that the peak value of the v_ mode (n*) decreases from 

fl* = 0.4 (for A*=0) to nl"0«1 (for Aj=63 cm ) . By our numerical results, 

we estimate that the rising times of the average excitations t* 

[defined by the first peak values of the average excitation nf(t*)] 

range from t*=27 picoseconds (ps) to t*=70 ps depending on the 

internal detuning A_.  However, the rising times of the v_ mode, 

i.e., the IVR times are in the order of ti^lO ps (or 3.3 cm" ). 

A typical excitation diagram is shown in Fig. 2(C) for the case 

of (A,E/2TT,A
/
I/27r) = (2.71,1.00). 

Finally, we consider the optimal internal detuning where the intra- 

molecular anharmonic coupling is the most significant (or the maxi- 

mum excitation of the v2 mode H^)•  
We see,   from Fig. 3, that the 

optimal internal detuning is A'/2TT = 1.6 cm  when the external 

detuning is fixed at its optimal value A /2TT«<2.7 cm 

(B) H/W heterogeneous system 
—1 18 

The IR spectrum of H/W is given by (in units of cm )  : 

v.=1048.6, v =645.3 and v_=1290.6.  The fourth-order anharmonic 

coupling is given by e'Q^Q2Q3, i.e., AI=2TT (2v1~v2-v3) , where the 

v. mode is vibrationally excited by a C02 laser. Again, we investi- 

gate the average excitations of these three modes for the case of 

r.=0.  Since the surface-phonon-induced level width (r.) simply 

causes the decay of the energy excitations, it does not affect 

the rates of IVR significantly.5 
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Two typical dynamical features of the average excitations 

H^/ n2 
and S3 (for vi' v2 and v3 modes' respectively) with laser 

8     2 —1 
intensity 1=10 W/cm and the anharmonocity e'=5 cm  are shown 

in Figs. 4(A) and (B).  It is seen that these dynamical patterns 
2 

of the excitations governed by e'Q-iQ^Qo are significantly different 
2 

from that of the SF, system governed by eQ-Q-Qg. We note that 

the former system involves the operator function a,a^a^ corres- 

ponding to a two-photon processes followed by an anharmonic two- 

quanta coupling, while the latter system involves a.,(a+) a* cor- 

responding to a single-photon processes followed by an anharmonic 

three-quanta coupling.  We also note that the IVR rate of the 

H/W system is faster than that of the SFg system; however, the 

average excitation of the active mode in H/W system is lower since 
2 

the two-photon transition (governed by IJQEQ ) is usually less 

probable than the single-photon transition, i.e.. the dipole 

transition governed by UÄEQ, where yl and UQ are, respectively, 

the first and second derivatives of the active dipole moment 

with respect to the normal coordinate Q and E is the local elec- 

tric field acting on the species. 

In conclusion, we note that for a heterogeneous system 

the local electric field acting on the adspecies may be greatly 
19 enhanced by the surface effects such as roughness.  Furthermore, 

the surface bond breaking can also be possible via van der Waals 
20,21 

interaction or the surf ace-migration-mduced rafe processes. 

One of us (J.L.) would like to thank Prof. Z. Gan of 

Peking University for useful communications and sending their 

Chinese articles on SF.,. 

 .  1        1 "•• 
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Figure Captions 

Fig. 1.   The peak value of the average excitation of the active 

mode (ii?) vs. the external detuning (A£) .  [SFg system]. 

Fig. 2.   The time-dependent average excitations of the active 

mode (n,),   the v_ mode (fL) and the vg mode (n3) for 

the detunings (AE/2ir,A'/2TT) = (A) (0,0) exact resonance, 

(B) (0,20) far-off internal resonance and (C) (2.71,1.00) 

A'/2TV = 2.71 is the optimal external detuning. 
E 

Fig. 3.  The peak value of the average excitation of the v2 

mode (R$) vs. the internal detuning (A^) with the opti- 

mal external detuning A'E=A*. 

Fig. 4.  The dynamical features of the average excitations of 

the active mode (i^) ,   the v2 mode (n2) and the v3 mode 

(n,) for a heterogeneous system H/W with detunings 

(A' /2TT,A'T/2TT) = (A) (0,0) exact resonance and (B) 

(10,80) . 
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